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pressure gradient 
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An envelope model is applied to the case of a two-dimensional channel with ciliated 
parallel walls. The formulation assumes identical values of the longitudinal and 
transverse amplitudes, frequency and wavelength of the two walls; it allows for 
arbitrary phase relations and arbitrary (not too small) spacing, and it includes an 
externally imposed pressure gradient. General results of a second-order perturbation 
analysis of creeping flow are presented. The time-averaged steady mean velocity may 
be viewed as the sum of two contributions: that of the pressure gradient (Poiseuille 
flow), and that of ciliary-driven motion which, owing to nonlinearities, also depends on 
the pressure gradient and reduces to pure streaming in the absence of a pressure 
gradient. For zero pressure gradient, the ratio of the streaming velocity of the channel 
and that of a single sheet shows the degree to which streaming is augmented or impeded 
by flow interaction. This ratio increases for the symplectic and peristaltic cases, but 
decreases for the antiplectic case, as the width of the channel decreases for fixed values 
of phase relation and amplitudes. The net flow arising from streaming and pressure 
gradient is shown as pump characteristics, and associated efficiencies are given. The 
results indicate that propulsion (pumping) is greatest and most effective for symplectic 
metachronism in ciliated channels with predominantly transverse waves, that it is 
nearly as good for peristaltic motion, but that it is considerably inferior for antiplectic 
metachronism in channels with predominantly longitudinal waves. 

1. Introduction 
Cilia are hair-like organelles that are found on the surface of organisms. The basic 

function of the cilia is to move water and in some cases mucus. Each cilium has a 
regular beat pattern consisting of the effective stroke in which it moves rapidly towards 
one side and the recovery stroke in which it moves more slowly back in the other 
direction in a bent position. In this ‘rowing-type, beat, a steady velocity (streaming) is 
produced in the direction of the effective power stroke. Cilia usually occur in large 
numbers covering an entire surface uniformly, but they may also occur in isolated 
clumps or bands. If a group of cilia beats asynchronously, so that adjacent cilia are 
slightly out of phase, the movement gives rise to metachronal (out of phase) waves. 
While the periodic beating motion of the individual cilium is largely autonomous and 
biological it is believed that the metachronism displayed is a result of the mutual 
interaction of cilia through viscous forces. 

According to the Knight-Jones (1954) terminology, different types of metachronism 
exist. Two types, the symplectic and antiplectic type, are termed orthoplectic since the 
effective stroke and the wave propagation occur in the same plane. In the symplectic 
type of metachronism the direction of the effective stroke is the same as that of wave 
propagation. In antiplectic metachronism the direction of the effective stroke is 
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opposite to that of wave propagation. Metachronism is termed diaplectic, on the other 
hand, if the effective stroke and the wave propagation occur at right angles to each 
other. Two types of diaplectic metachronism are distinguished, dexioplectic and 
lueoplectic, in which the effective stroke occurs toward the right and the left, 
respectively, of an observer looking in the direction of wave propagation. 

Fluid transport due to systems of beating cilia has been analysed by two main 
approaches. One approach, the sublayer model, approximates each cilium by a line of 
force singularities (stokeslets) and the velocity field due to all cilia is then found by 
summing over all singularities. The model allows computation of the instantaneous or 
the average fluid velocity at any point inside or outside the cilia layer but applies only 
to widely spaced cilia. The sublayer model was initiated by Blake (1972) for the infinite 
plane wall and extended to the case of two parallel walls (Blake 1973). The latter case 
was later extended by Liron & Mochon (1976) and Liron (1978) to include the time 
variations in the cilia layer. The other approach, the envelope model, to be considered 
here, replaces the array of closely packed cilia by an envelope of cilia tip profiles whose 
prescribed motion as a flexible and, in general, extensible surface determines the 
velocity field outside the cilia layer. The model implies that the cilia totally entrain the 
fluid in the interstitial space and it is appropriate for many biological systems where the 
flow between neighbouring cilia is unimportant because of small interciliary distance. 
See Brennen & Winet (1977) for a summary. 

Many envelope models have been made for water propulsion based on the two- 
dimensional waving sheet. Taylor (1951) made an inextensible model of a transverse 
wave at zero Reynolds number. Reynolds (1965) introduced a first-order motion in the 
longitudinal direction, as well as in the transverse direction, by allowing the sinusoidal 
surface to strain. Tuck (1968) simplified the results of Taylor and Reynolds and 
considered longitudinal and transverse oscillations separately. Blake (197 1 b) con- 
sidered longitudinal and transverse oscillations acting together, which implied a variety 
of shapes of envelopes not considered previously. External flows induced by ciliated 
surfaces of other geometries have been considered, such as the infinite cylinder (Blake 
1971 b), travelling surface waves on a sphere (Blake 1971 a), and then oscillating 
boundary layer on a sphere (Brennen 1974). The envelope model, in the long- 
wavelength approximation, has also been used to model various physiological flows, 
for example, cilia-induced flow in the female and male reproductive tracts (Lardner & 
Schack 1972). The two-dimensional channel flow due to transverse oscillations of the 
walls (peristaltic motion) (Jaffrin & Shapiro 1971) including an imposed pressure 
gradient was formulated by Burns & Parkes (1967) using a general perturbation 
analysis for creeping flow. Results, to second and fourth order in amplitude, were 
presented for two cases, namely the streaming due to peristaltic motion without a 
pressure gradient, and the flow due to a pressure gradient for a channel with fixed wavy 
walls. The case of peristaltic motion was later treated numerically by Takabatake & 
Ayukawa (1982), extending the results to finite amplitudes and moderate values of the 
Reynolds number. In a similar study, Takabatake, Ayukawa & Mori (1988) also 
evaluated the efficiency of peristaltic pumping in tubes as well as in channels. 

In the present study we extend the work of Burns & Parkes (1967) on two- 
dimensional channel flow to include arbitrary phases of the beating cilia on the two 
walls and to investigate pressure gradient and streaming acting together. The 
motivation for studying these effects is the following hypothesis about the functioning 
of the pump of the blue mussel (Mytilus edulis) (Jsrgensen 1989). Based on 
observations of pumping rates in the blue mussel under conditions of excessive 
relaxation, the normal relaxed state and disturbed states, corresponding to different 
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FIGURE 1.  Model of a channel of nominal width h with ciliated parallel walls illustrating envelopes 

over cilia. Coordinates (X,  Y) represent the envelope, and (x, 0) and (x, h) their mean position. 

widths between opposing bands of lateral cilia, it has been hypothesized (Jsrgensen 
1990, p. 5 5 f 3  that the distance between opposing bands of cilia has been dimensioned 
for the largest favourable hydrodynamic interaction in regard to pumping rate when 
the animal is relaxed. The pump in question is considered to be the narrow bands of 
lateral cilia, positioned on opposite walls of essentially two-dimensional channels 
formed by the gill filaments. Cilia are arranged in rows forming an angle of about + 40" 
and -40" with the direction of flow, respectively, in two opposing bands whose 
metachronal waves are diaplectic, moving in opposite directions as the laeoplectic type. 
Wavefronts are probably similarly inclined. Because of the three-dimensionality and 
complexity of the boundary conditions of this problem we address the simpler, two- 
dimensional problem of a plane, ciliated channel of infinite extent with orthoplectic 
motion. The results of this model cannot be expected to apply to the diaplectic flow. 
However, our main objective is to determine the conditions for which the interaction 
between flows induced by the two opposing cilia systems can lead to an augmentation 
of the net flow. Here, the envelope model is convenient. Although limited to small 
amplitudes and to surfaces of infinite extent this model can provide rather general 
results by analytical means and is a step towards a realistic model. 

As has been mentioned, the envelope model is appropriate for cilia that are 
sufficiently closely packed. To fully entrain the fluid in the interstitial space between 
cilia, their spacing d should be small compared to the viscous length (Stokes radius) v / u  
or v / w L ,  where v is the kinematic viscosity and, u E WL a typical cilium velocity, w 
denoting the angular frequency and L the cilium length. Also, the effect of the wall 
should not be felt at the tip envelope, implying d / L  < 1.  The above condition, 
d < v / w L ,  is sufficient for the case of symplectic metachronism where the cilium beats in 
the same direction as the wave is progressing and the cilia are closer together through- 
out the whole beat. But this is not the case for antiplectic metachronism, a conclusion 
reached by Blake (1972). In this case, the cilia separation at the peak of the effective 
stroke is increased by approximately L sin(kd) % Lkd, assuming kd < 1, where kd is 
the phase between two adjacent cilia, k = 2z/h is the wavenumber, h being the 
wavelength. The above criterion then becomes d(l + L k )  < v / w L .  The foregoing 
reasoning is due to Brennen (1974). He concluded less restrictively, probably because 
usually Lk > 1, that dLk 6 v / w L ,  kd < 1. These conditions are valid for many cilia 
systems (see Brennen & Winet 1977). 

The envelope model is applied to a two-dimensional channel with ciliated parallel 
walls (figure 1). The cilium beat is represented by both symplectic and antiplectic 
waves, involving both longitudinal and transverse oscillations. Orthoplectic met- 
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achronal waves of the two walls have arbitrary phases, but the same speed and 
amplitude, with transverse oscillations in phase, and the channel is subject to an 
arbitrary pressure gradient. 

2. Formulation of the problem 

may be neglected and the two-dimensional, incompressible flow is governed by 
For creeping motion at vanishing oscillatory Reynolds number (Re = w/k2v), inertia 

v.v = 0, v p  =,uv2v,  (la,  b) 

where tr = (u,v) denotes the velocity, p the pressure, and ,u the dynamic viscosity, 
assumed to be constant. Here, continuity is satisfied by introducing the stream 
function, u = t@/ay, v = - a$/ax, and the curl of the balance of momentum becomes 

v4+ = 0. (2) 
The oscillating extensible walls of the channel at (x,y) = ( X ,  Y )  are defined by (see 
figure 1) 

X, = x+a sin (z+$,), = b sin z ,  (3 a) 

(3 b) Xu = x + a  sin (z+&,), Yu = h - b  sin z,  

where L and U refer to the lower and upper surfaces respectively, a is the longitudinal 
and b the transverse amplitude, h the nominal channel width, 4 the phase, and 

Z =  w t - k x  (4) 
is a convenient parameter representing a frame in which waves are stationary. 
Equation (4) describes progressive waves of velocity c = w / k  in the positive x- 
direction. One set of amplitude parameters and one frequency are appropriate and 
give, with two phase parameters, considerable flexibility. To limit the number of 
parameters no phase lag has been introduced between transverse amplitudes. From (3) 
it is noted that the effective beat in the ciliated surfaces occurs near z = in. Hence, the 
longitudinal velocity component (see ( 5 )  below) is positive for the symplectic 
metachronism with 71 < 4 c 271 and negative for the antiplectic metachronism with 
0 < q5 < 71, and any combination of metachronisms of the two walls may be studied. 

The boundary conditions are those of no slip along the walls, implying the following 
specified velocities at the lower and upper walls, respectively: 

(5 a) 

(5 b) 

u, = & = a0 cos (z+$,), 0, = $, = bw cos z,  
uu = Xu = aw cos ( z + + ~ ) ,  vu = Yu = -bw cos z. 

The final condition of an externally imposed pressure gradient is needed to 
completely determine the volume flux through the channel. (The inverse problem of an 
externally imposed volume flux with the aim of determining the pressure gradient will 
not be considered but its solution may be inferred from the present ones.) Partial 
integration of (1 6) gives the longitudinal pressure increase over one wavelength, 

A p = p  V’udx, l 
which may be evaluated at any value of y because of the periodic nature of the problem, 
see also (7) below. 
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3. Perturbation solution 
Following the method of Burns & Parkes (1967) the stream function and the 

vorticity are expanded in Fourier series and the coefficients are determined from the 
resulting ordinary differential equations, which gives 

w o o  
$(z, y )  = E0y3 + m,y2 + h, y + - C {sinh (nky) [(a, + b, ky) sin (nz) 

k2 la-1 

+ (c, + d, ky)  cos (nz)] + cosh (nky) [(en +f, ky) sin (nz) + (9, + h, ky)  cos (nz)]]. (7) 

The series solution (7) is periodic in z ,  higher harmonics being needed to accommodate 
nonlinearities introduced by the boundary conditions below, which determine the real 
coefficients I,, rn,, h, and a, * - *  h, to the desired order. The first two terms on the right- 
hand side of (7), part of the general solution to (2), are needed to accommodate the 
pressure gradient and differences in phase between the sheets. The y-dependence is in 
effect a series expansion in powers of dimensionless amplitudes ka and kb, which need 
be small compared to unity (see also Burns & Parkes 1967). Clearly there is no upper 
bound on channel width h, but we expect a lower bound, 2b < h. 

Inserting u = into (6) immediately yields 

where P denotes the pressure drop per wavelength (P = -Ap/h) .  Thus, for P to 
denote a pressure gradient opposing the flow driven by the ciliated walls it should be 
negative for symplectic metachronism but positive for antiplectic metachronism. 

To approximately satisfy ( 5 )  at the actual location of the walls (3) we expand the 
velocity in Taylor series, from (x,O) for the lower wall, 

au au 
ax aY 

u(X,, r,) = u(x,o)+(xL-x)-(x,o)+ Y,-(x,O)+ .* .  

I av av 
ax aY 

v(X,, Y,) = v(x, 0) + ( X ,  - x) - (x, 0) + r, - (x, 0) + * - * ,  

and from (x,h) for the upper wall, 

I au au 
ax aY 

av av 
ax aY 

U ( X U ,  Yu) = u(x, h) + ( X u  -x) - (x, h) + (Yu - h) - (x, h) + .*.  , 

v(XU, Yu) = V(X, h) + (Xu - x)-(x, h)  + (Yu-h) - (x, h)  + - 1 . .  

Then, inserting u = a@/i3y and v = -a@/ax from (7) into (9), equating the results to 
(5) ,  and including all terms up to second order in ka and kb, yields the coefficients a, 
9 . .  h,, given in the Appendix, and 

rn, = -+(c /b)  (a, +f, + ka sin #,), 
h, = fc{ - (ka)' cos' #L - (kb)' + ka(a, +fl) sin #, - 2kbb1}. 

(10) 

(1 1) 
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4. Results 
The main interest being the net effect of the cilia-lined walls on the flow, here we 

focus on the resulting mean velocity. This is defined as the mean flow rate divided by 
mean channel width and it is calculated from (Jaffrin & Shapiro 1971) 

which to second order may be expressed as 

cb 
2h U = I ,  h2 + m, h + h, -- {sinh (kh) [b, + e,  + khf,] + cosh (kh) [a, + khb, +A] + a, +f,}. 

(13) 
To interpret this result it is first noted that retaining only terms to first order in 

amplitudes ka, kb yields m, = -%hl,,, h? = 0, and the last term in (13) vanishes. As 
expected, the solution to this order consists of linear harmonic oscillations superposed 
upon a Poiseuille flow driven by P, and there is no streaming. Next, to second order, 
cilia-driven streaming appears, but it is coupled with the pressure gradient term lo that 
enters into coefficients a,,b, andf,, hence into m , , ~ ,  and the last term of (13). The 
streaming amounts to a constant plus a term that is linear in y whenever the two sheets 
are not in phase; m, includes contributions from this linear term and from the pressure 
gradient. 

In the case of Poiseuille flow through a uniform channel the mean velocity is 
Up = Ph2/12p, which is also the value of the net flow U of (13) when a = 0, b = 0 (first- 
order solution). The present solutions have been evaluated for the cases reported by 
Burns & Parkes (1967). The results agree with their second-order solution for both 
peristaltic motion with no pressure gradient and for fixed wavy walls. 

For the problem at hand, (13) made dimensionless by the wave velocity U/c ,  is a 
function of six dimensionless parameters: kh, ka, kb, q5L, q5u, and P. They represent 
channel width, longitudinal and transverse amplitudes, phases of metachronal waves 
at the lower and upper walls, and the externally imposed pressure gradient, respectively. 

In view of the large number of parameters, a complete parameter study is not 
feasible. Attention is therefore confined to three specific waveforms with quantified 
amplitudes. We denote by case I that of predominantly transverse waves, with 
ka/kb = 0.4 (ka = 0.2, kb = 0.5), by cuse 2 that of predominantly longitudinal waves, 
with ka/kb = 2.5 (ka = 0.5, kb = 0.2), and by case 3 that of peristaltic motion 
(ka = 0, kb = 0.5). For these three cases the influence of the remaining parameters on 
the resulting mean velocity, U/c ,  is studied. The influence of the channel width is given 
particular attention since it will reveal the mutual interaction of flows induced by two 
cilia systems. 

4.1. Streaming, P = 0 
In the absence of a pressure gradient, it is of interest to compare the present results for 
streaming in the channel to those for a single waving sheet, which may be calculated 
from 

U,/C = $[ - (ka)' + (kb)' - 2ka kb sin $1 (14) 
(see for example Brennen & Winet 1977, equation 29). For the two amplitude ratios 
used in the present study, (14) reduces to +0.1050-0.10 sin #, where the plus and 
minus signs correspond to case 1 and case 2, respectively. 

Results for the streaming velocity (13) versus phases are shown in figure 2 for case 
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FIGURE 2. Dimensionless streaming velocity U / c  at no pressure gradient versus phase angles q5L 
and $"; case 1, kh = 10, P = 0. 

1 and a large spacing of about 1.6 times the wavelength, kh = 10. Streaming is high 
when both sheets beat in symplectic metachronism (upper right quadrant of figure 2). 
It decreases as one sheet beats in antiplectic metachronism, and it becomes very small 
when both sheets beat in the antiplectic mode, clearly an inefficient combination of 
parameters. A map corresponding to figure 2 for case 2 proves to be that of figure 2 
mirrored about the diagonal through upper left and lower right quadrants and with the 
sign of streaming reversed. This fact can be seen by interchanging a and b in (14), 
noting that the solution for large kh becomes the mean value of contributions from 
each sheet considered separately. Actually, numerical studies indicate that the spacing 
of kh = 10 is not quite adequate to correspond to the asymptotic case of infinite 
spacing between sheets. 

The results in figure 2 also show that the symplectic mode is most effective for 
predominantly transverse waves, contrary to the antiplectic mode which is most 
effective for predominantly longitudinal waves. This conclusion is in agreement with 
the results of Blake (1971 b) for the single waving sheet but it is found to also be valid 
for smaller values of the spacing for the channel. Thus, figure 3(a) shows case 1 and 
figure 3(b) case 2, both for spacing equal to about 0.5 times the wavelength, kh = 3. 
In figure 3 (a) the interaction between induced flows augments the streaming with both 
sheets in the symplectic mode, again reaching a maximum at a common phase of :z. 
However, the minimum streaming, at a common phase +IT with both sheets in the 
antiplectic mode, is also positive and shows an augmentation relative to the case at 
kh = 10. This positive streaming for all phase relations is perhaps surprising but is a 
characteristic of predominantly transverse waves, culminating in peristaltic motion. 
Results for case 2, for kh = 3 (figure 3b), show slightly smaller streaming for pure 
antiplectic metachronism, becoming positive for pure symplectic metachronism. 
Apparently, transverse waves are relatively insensitive to the metachronism, while 
longitudinal waves are only effective for antiplectic metachronism. 

Next, results of the streaming velocity versus non-dimensional channel width (kh) 
for different phase relations of surfaces defined by (3) are shown in figures 4 and 5 for 
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FIGURE 3. Dimensionless streaming velocity iJ/c at no pressure gradient versus phase angles q&, 
and &; (a) case 1 and (b) case 2; kh = 3, P = 0. 

case 1 and case 2, respectively. Here, only ciliated channels with either symplectic or 
antiplectic waves on both walls are considered. For close spacing of symplectic 
metachronism of case 1 (figure 4) the streaming velocity in the positive x-direction 
increases as the channel width decreases. For large spacing (kh > 5 )  the streaming 
decreases slightly as the channel width decreases. For antiplectic metachronism of case 
2 (figure 5) ,  on the other hand, the magnitude of streaming decreases monotonically as 
the channel width decreases from infinity. Also, the magnitude of the streaming is 
generally greater for symplectic metachronism of case 1 than for antiplectic 
metachronism of case 2 for close spacing. 
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FIGURE 5. Dimensionless streaming velocity U / c  at no pressure gradient versus dimensionless channel 
width kh for selected phase relations; antiplectic metachronism of case 2 = in), P = 0 ;  ---, 

, 9, = 1. , $  =1. n+1%'-- $ --1 +Ln.--- 
ZX. u 2 - 4  , u - 2 n - z  

Finally, figure 4 also shows case 3 of peristaltic motion (of the same amplitude as 
case l), for which the streaming is always less than for the other cases shown. 

For close spacing of symplectic metachronism of case 1, the streaming velocity is 
greater for the optimum channel (see figure 4 for $u = $L) than for the single sheet (see 
(14)). For large spacing (kh > 5 )  the streaming data prove to be slightly lower (rather 
than greater) than the asymptotic values, which are the mean values of streaming of 
each sheet calculated from (14). Numerical studies indicate that this is a special feature 
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FIGURE 6. Pump head B versus dimensionless mean velocity U / c .  (a) Selected phase relations of 

4" = ;n.+;n; , peristaltic motion of case 3. (b) Selected channel widths of symplectic meta- 
chronism of case 1 with the two sheets in phase (9, = = in); ---, kh = 3.0; ---, kh = 3 .5 ,  
-- , kh = 4.0; 
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of symplectic phase relations of both cases 1 and 2 and other amplitude ratios. For 
antiplectic metachronism of case 2, the magnitude of the streaming velocity is always 
smaller for the optimum channel (see figure 5 for = q5J than for the single sheet (see 
(14)). This suggests a constructive interference of the oscillating motion generated by 
each sheet for symplectic metachronism of predominantly transverse waves, and a 
destructive interference for antiplectic metachronism of predominantly longitudinal 
waves for narrow ciliated channels. 

4.2. Pump characteristics 
By including a pressure gradient, simulating an externally imposed flow resistance, the 
ciliated channel acts as a pump ( P  < 0 for symplectic metachronism and P > 0 for 
antiplectic metachronism). Figure 6 shows typical pump characteristics, in terms of 
non-dimensional pump head (9 = -h2P/pc) versus flow (U/c ) ,  calculated from (13). 
Figure 6(a) shows pump characteristics for kh = 3 and different phase relations of 
symplectic metachronism of case 1, as well as the special case of peristaltic motion, 
involving no phase relations. In this case, the most efficient pump is that of the two 
sheets in phase. Figure 6(b) shows the effect of channel width on the characteristics for 
the two sheets of symplectic metachronism of case 1 in phase. Here, the most efficient 
pump is clearly that with close spacing. 

As expected, all pump characteristics are linear. This is readily shown by inspection 
of the right-hand side of (13), where c appears as the factor in all terms not involving 
lo, which includes some terms contained in the coefficients a,, b, andf, appearing in the 
last term of (13) (see also the Appendix). Therefore, (13) may be rearranged as an 
equation for the pump characteristic, 

9 = A,(A, - U/c) ,  (1 5 )  
where B = - h2P/,w is the dimensionless pressure rise delivered per wavelength, and 
constants A ,  and A ,  depend on parameters ka, kb, kh, &, and &. This shows the 
characteristics to be linearly decreasing with increasing flow, which is to be expected 
for a leaky viscous pump. It also shows the explicit dependence on viscosity and 
frequency, to be discussed below. 
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4.3. Pump eficiency 
The mechanical efficiency 7 of the ciliated channel pump is defined as the ratio of useful 
(reversible) power hUP gained by the fluid per unit length of channel to the actual 
power E expended by the envelopes on the fluid (Shapiro, Jaffrin & Weinberg 1969); 
thus 

The averaged power required in working against viscous stresses and pressure per unit 
length of channel, accounting for the slope of envelopes, is calculated from 

7 = -hUP/E.  (16) 

0.16 
- (4 

* - - - -  
0.12 - 

0.08 - I .  . 
- 

, c -  

I 

where 

and the pressure along the envelopes is obtained by evaluating the integral in x of (1 b) 
at y = yL and y = Yu, respectively. The slope of envelopes (3) is given by tan 

Figure 7 shows efficiencies calculated from (16), to second order in ka and kb, for the 
particular pump cases considered in figure 6 .  The symplectic pump of case 1 is seen to 
be superior to the peristaltic pump at high flow and relatively small pressure gradients. 
Numerical results indicate that the symplectic pump of case 1 is considerably superior 
to the antiplectic pump of case 2 in regard to performance and efficiency. Also, 
numerical studies indicate that it is necessary to account for the slope of envelopes for 
the relatively high values of amplitudes used in the present study. 

o = (a y/ax)/(ax/ax). 

5. Discussion 
In this paper the envelope model has been applied to a ciliated two-dimensional 

channel subject to a pressure gradient. The main objective has been to determine the 
ciliary water propulsion dependence on channel width and phase relations of the 
metachronal waves of the two sheets forming the channel walls. To limit the number 
of parameters, transverse amplitudes were assumed to be in phase but longitudinal 
amplitudes could have arbitrary phase. Also, frequency, wavelength, and amplitudes 
were the same for the two sheets. 

Creeping flow solutions have been obtained to second order in dimensionless 
transverse and longitudinal amplitudes, which should be small compared to unity. 
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Results are exemplified by specific cases of the amplitude ratio : one of predominantly 
transverse waves; one of predominantly longitudinal waves; and that of pure 
transverse waves (peristaltic pumping). The first case always provides the most effective 
propulsion for symplectic metachronism and the second case for antiplectic 
metachronism. Peristaltic motion provides good propulsion, but not the best. Some 
added longitudinal amplitude in symplectic metachronism has been found to yield 
better propulsion. 

In the absence of a pressure gradient, results for the channel are compared to those 
of a single waving sheet to illustrate the degree to which streaming is augmented or 
impeded by the flow interaction. In fact, our numerical studies of the solution show 
that in the limit of large channel width (compared to wavelength) the streaming for the 
channel approaches the mean value of streaming predicted for each single sheet. This 
result appears to be physically meaningful although it is not readily shown from the 
analytical solution. As channel width is decreased, all cases of antiplectic metachronism 
yield a monotonically decreasing magnitude of the streaming. All cases of symplectic 
metachronism, however, following a small decrease, yield increasing values of 
streaming, and the augmentation may be manyfold for narrow channels. Of course, the 
streaming cannot exceed the wave velocity. These overall trends appear reasonable 
because decreasing channel width is expected to favour propulsion in the direction of 
the metachronal wave. The inversion of the effect of flow interference on net streaming 
(for kh > 5 )  found in all cases of symplectic metachronism studied, although very 
small, is puzzling and no physical explanation is at hand. 

These results show some trends similar to those for a waving sheet near a wall or in 
a channel. For this problem, Katz (1974) found the influence of a wall to be important 
for kh d 5 ,  which may be compared to negligible change in streaming for kh 2 5 in our 
figures 4 and 5. He also found the propulsive velocity, and the power expended, to 
increase as the distance to the walls is decreased for the symplectic case. 

By including a pressure gradient, the results have been interpreted and presented as 
pump characteristics and associated efficiencies. The results indicate that the most 
efficient pump is that of close spacing of two opposing sheets with predominantly 
transverse waves in symplectic metachronism and in phase. In general, for given 
geometry, amplitudes and wavelength, (15) also shows that the shut-off head of the 
present pump (P for U = 0) is proportional to the product of beat frequency and fluid 
viscosity, po, and the zero-back-pressure flow (U for P = 0) is proportional to the beat 
frequency and independent of viscosity. The same dependencies are found for 
peristaltic pumping at larger amplitudes in the numerical study of Takabatake & 
Ayukawa (1 982, figures 16 and 18) for Reynolds numbers (h2w/4nv) up to about unity. 
It is of some interest to note, on the other hand, that experimental results for the blue 
mussel suggest that the shut-off head is independent of both beat frequency and 
viscosity, and the zero-back-pressure flow to be inversely proportional to viscosity 
(Jnrrgensen, Larsen & RiisgHrd 1990). As pointed out earlier, the cilia pump of the blue 
mussel is quite different and the present results cannot be expected to apply to this 
pump. Still, it would be surprising to find that orthoplectic metachronism or finite 
width of cilia bands should change the dependence on frequency and viscosity. It is 
possible that specified kinematics of the ciliary motion may not model reality, and that 
the force-limited model suggested by Jrargensen et al. (1990) would be more 
appropriate. 

The stimulating discussions with Professor C. Barker J~rgensen in the course of this 
work are gratefully acknowledged. 
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Appendix 

c1 = kakh [{ - kh tanh' (kh)+kh) cos $,+{tanh (kh)/cosh (kh)} cos $, ] /D,  
d, = ka [{kh tanh2 (kh) + tanh (kh) - kh} cos f i L  

-{tanh (kh)-kh}cos q5,/cosh (kh)] /D,  

To second order, coefficients in (7) are given by 

D = - tanh2 (kh) [1+ (kh),] + (kh),, el = kb, g ,  = 0, h, = - c1 +ku cos $,. 
The remaining coefficients a,, b,, and f, are solved by Gauss elimination of the linear 
system Ax = y, where [ [ z]  [ h] 

A = a21 7 x =  bl 7 y =  y2 -9 

a31 a32 ' 3 3  

a,, = cosh (kh) + 1, a,, = sinh (kh) + kh cosh (kh), 
a13 = kh sinh (kh) + cosh (kh) + 1, 

uZ1 = sinh (kh), aZ2 = kh sinh (kh), = kh cosh (kh), 
a3, = ika {sin q5L - cosh (kh) sin $,} -ikb sinh (kh) - kh/kb, 

= -;ka {sinh (kh) + kh cosh (kh)} sin q5u -4kb {kh sinh (kh) + 2 cosh (kh) + 21, 
a33 = 4ka [sin $ L  - {kh sinh (kh) + cosh (kh)}sin 

-ikb (2 sinh (kh)+kh cosh (kh)}-khlkb, 
y ,  = - ka(sin 4, + sin $,) - kb sinh (kh) + 61, hkblw, yz  = -kb (cosh (kh) + l}, 
y3  = -;(ku), {cos' $,-cos2 $U}+i(kb)2 {cosh (kh)+ l}++kakb sinh (kh) sin $u 

+ hka sin $,/b - 3(1, k/w)[h2 -3'1. 
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